INCORPORATION OF L-METHIONINE-METHYL-¹⁴C INTO GENTAMICINS. III. CHROMATOGRAPHIC SEPARATION AND DEGRADATION OF COMPONENTS OF METHYL-¹⁴C-GENTAMICIN COMPLEX

B.K. LEE, R.G. CONDON, A. MURAWSKI and G.H. WAGMAN

Antibiotics Department, Schering Corporation, Bloomfield, New Jersey, U.S.A.

(Received for publication October 15, 1974)

A selective and high incorporation of radioactivity from methyl-¹⁴C-L-methionine into gentamicin components was shown by LEE and his co-workers¹⁾. Methyl-¹⁴C-gentamicin complex was prepared, fermentatively, by employing *Micromonospora purpurea*, and the resulting radioactive antibiotics isolated and purified²⁾. The results on a chromatographic separation of components from the radioactive gentamicin complex⁸⁾, acid hydrolysis of each component, and determination of radioactivity incorporated into each component and subunit are reported in this paper.

Materials and Methods

Adsorbents. Amberlite IRA-401S resin and

Fig. 1. Radioactivity scan of gentamicin C_1 , C_2 and $C_{1\alpha}$ components

silica gel powder ($60 \sim 300$ mesh) were purchased respectively, from Malinckrodt Chemical Co. and J. T. Baker Chemical Co.

Column chromatography. Redioactive gentamicin complex sulfate (2.5 g) was converted to base by means of Amberlite IRA 401S (200 g in OH⁻ from) column chromatography. Gentamicin complex base (843 mg) was packed on a silica gel (150 g) column (2.8× 96.2 cm), and components were separated and isolated by eluting the column with the lower phase of chloroform-methanol-17 % ammonia (2:1:1 by volume), at a flow rate of 10 ml/20 min.

<u>Hydrolysis.</u> Gentamicin components, at concentrations of 10 mg each/ml $6 \times$ HCl, were hydrolyzed in sealed tubes for 2 hours in a boiling water bath.

Paper chromatography. Paper chromatograms of the gentamicin components were developed in a descending system of the lower phase of chloroform-methanol-17% ammonia (2:1:1 by volume), and hydrolysates of the respective components were separated in an ascending system of *n*-propanol-pyridineacetic acid-water (25:10:3:12 by volume).

Assay of radioactivity. A Nuclear Chicago scanner (Model 1002) and an Intertechnique

Table 1. Conversion of gentamicin sulfate to base

	Weight (mg)	Bio- activity (μg/mg)	Radio- activity (µCi)	Specific radio- activity (µCi/mg)	
Sulfate	2,508	476	1,534	0.612	
Base	843	868	1,138	1.348	

scintillation spectrometer (Model SL 30) were used for the scan and measurement of radioactivity.

Results

When radioactive gentamicin complex sulfate was converted to base by using an IRA 401S column, specific radioactivity and bioactivity were changed from $0.612 \,\mu\text{Ci/mg}$ and 476 μ g/mg sulfate, respectivity, to 1.349 μ Ci/mg and 868 μ g/mg base (Table 1).

From an input of 843 mg of the radioactive gentamicin complex base, 296 mg of the C_1 component, 34 mg of the C_2 component and 113 mg of the C_{1a} component were separated and isolated chromatographically (Table 2). The specific radioactivity of the isolated C₁, C₂ and C_{1a} components were 1.537 μ Ci, 1.099 μ Ci and 0.919 μ Ci/mg base respectively (Table 2). Radiochemical and biological properties of the components were quite satisfactory as shown in Fig. 1 and Fig. 2.

Radioactivity distribution of 2-deoxystreptamine- C_1 -purpurosamine-garosamine was 0:226:227; that of 2-deoxystreptamine- C_2 purpurosamine-garosamine was 0:16.4:18.5, and that of 2-deoxystreptamine- C_{1a} -purpurosamine - an unknown substance (which migrated between C_{1a} -purpurosamine and

Fig. 3. Radioactivity scan of ninhydrin-treated gentamicin C1 hydrolysate.

Table 2. Separation of components of gentamicin complex base.

Fraction	Tube No.	Component	Weight (mg) Bioactivity (µg/mg)		Radio- activity (µCi)	Specific redioactivity (µCi/mg)	
1	276~342	C_1	296.0	690	455.0	1.537	
2	343~427	$C_1 \! + \! C_2$	320.5	907	383.6	1.197	
3	428~454	\mathbf{C}_2	34.2	802	37.6	1.099	
4	455~474	$\mathrm{C}_{2}\!+\!\mathrm{C}_{1\mathrm{a}}$	4.6	150	3.8	0.816	
5	475~582	C_{1a}	112.7	642	103.5	0.919	
6	583~709	C_{1a} +polar	18.4	426	15.9	0.865	
7	710~778	polar	10.5	551	*	_	

* —: Not determined.

Component hydrolyzed			Radioactivity of subunit released (μCi)		2-Deoxy-	Garosa-	
Component	Weight (mg)	Radioactivity (µCi)	Polar	Unknown	Purpurosamine	streptamine	mine
C_1	3.9	5.994	0	0	225.95 (C ₁ -purp)	0	226.73
\mathbf{C}_2	2.7	2.967	2.63	0	16.43 (C ₂ -purp)	0	18.54
C_{1a}	3.2	2.941	2.65	34.33	0 $(C_{1a}$ -purp)	0	66.52

Table 3. Hydrolysis of gentamicin componente.

Fig. 5. Radioactivity scan of ninhydrin-treated gentamicin C1a hydrolysate.

S

garosamine on papergrams)-garosamine was 0:0:34.3:66.5 (Table 5). Trace amounts of radioactivity were also detected in the origin of papergrams from the hydrolysates of C_2 and C_{1a} components (Table 3, Figs. 3, 4 and 5*).

Discussion

As shown in the results, great difficulty was encountered in chromatographically separating the gentamicin C_2 component free from the C_1 component. Only 34 mg of the pure C_2 component was isolated as opposed to the isolation of 321 mg of a mixture of the C_2 component as a major constituent and C_1 as a minor constituent. Another chromatographic column would be required to separate the C_2 component from the mixed fraction.

Based on the observed 1:1 radioactivity ratio of C_1 -purpurosamine-garosamine and on the 1:1.13 ratio of C_2 -purpurosaminegarosamine, it seems possible that only Nmethyl carbon atoms of the gentamicin components, but not C-methyl carbon atoms,

* Figs. 3, 4 and 5 show ninhydrin-positive spots and radioactivity scan of hydrolysates of the respective gentamicin components. In the case of garosamine, released from hydrolysis of all of the components, a spot is shown corresponding to the subunit which is weakly ninhydrinpositive since it possesses only one secondary amine group. are derived from methionine. The presence of an unknown substance, which migrates between C_{1a} -purpurosamine and garosamine on the radioautograms, in the hydrolysate of C_{1a} component is unexplainable. Incorporation of radioactivity into the unknown substance amounts to about half of that incorporated into the garosamine moiety. Further studies are in progress to resolve the origin of the methyl groups.

Summary

Radioactivity incorporated into individual components and subunits of each component was determined, following chromatographic separation and hydrolytic degradation of components of methyl-¹⁴C-gentamicin complex.

Literature Cited

- LEE, B.K.; R.T. TESTA, G.H. WAGMAN, C. M. LUI, L. MCDANIEL & C.S. SCHAFFNER: Incorporation of L-methionine-methyl-¹⁴C into gentamicins. J. Antibiotics 26: 728~ 731, 1973
- LEE, B. K.; R. G. CONDON, G. H. WAGMAN, K. BYRNE & C. ds. SCHAFFNER: Incorporation of L-methionine-methyl-¹⁴C into gentamicins. II. Large-scale preparation of methyl-¹⁴Cgentamicins. J. Antibiotics 27: 822~825, 1974
- WAGMAN, G. H.; J. A. MARQUEZ & M. J. WEINSTEIN: Chromatographic separation of the components of the gentamicin complex. J. Chromatogr. 34: 210~215, 1968